谷歌浏览器插件
订阅小程序
在清言上使用

Visualizing mitochondrial ATP fluctuations in single cells during photodynamic therapy by In-Situ SERS three-dimensional imaging.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy(2024)

引用 0|浏览0
暂无评分
摘要
An ultrasensitive strategy for in-situ visual monitoring of ATP in a single living tumor cell during mitochondria-targeted photodynamic therapy (PDT) process with high spatiotemporal resolution was proposed using surface-enhanced Raman scattering (SERS) 3D imaging technique. The nanostructures consisting of Au-Ag2S Janus nanoparticles functionalized with both Au nanoparticles linked by a DNA chain and a mitochondrial-targeting peptide (JMDA NPs) were deliberately employed to target mitochondria. The JMDA NPs exhibit excellent SERS activity and remarkable antitumor activity. The quantization of ATP relies on the intensity of the SERS probes bonded to the DNA, which shows a strong correlation with the generated hot spot between the Janus and the Au. Consequently, spatiotemporally controlled monitoring of ATP in the mitochondria of single living cells during the PDT process was achieved. Additionally, the JMDA NPs demonstrated remarkable capability for mitochondria-targeted PDT, providing significant antitumor effects and superior therapeutic safety both in vitro and in vivo. Our work presents an effective JMDA NPs-based SERS imaging strategy for in-situ and real-time 3D visualization of intracellular ATP in living tumor cells during the mitochondria-targeted PDT process, which enables significant information on the time point of PDT treatment and is beneficial to precious PDT applications in tumor therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要