Mechanical stretch induced calcium efflux from bone matrix stimulates osteoblasts.

Bone(2012)

引用 35|浏览4
暂无评分
摘要
The mechanisms by which bone cells sense critically loaded regions of bone are still a matter of ongoing debate. Animal models to investigate response to microdamage involve post mortem immunohistological analysis and do not allow real-time monitoring of cellular response during the emergence of the damage in bone. Most in vitro mechanical stimulation studies are conducted on non-bone substrates, neglecting the damage-related alterations in the pericellular niche and their potential effects on bone cells. The current study reports spontaneous efflux of calcium ions (Ca2+) (1.924±0.742 pmol cm−2s−1) from regions of devitalized bone matrix undergoing post-yield strains, induced by a stress concentrator. When these samples are seeded with MC3T3-E1 osteoblasts, the strain-induced Ca2+ efflux from bone elicits cell response at the stress concentration site as manifested by activation of intracellular calcium signaling (increase in fluorescence by 52%±27%). This activity is associated with extracellular calcium because the intracellular calcium signaling in response to mechanical loading subsides when experiments are repeated using demineralized bone substrates (increase in fluorescence by 6%±10%). These results imply a novel perspective where bone matrix acts as an intermediary mechanochemical transducer by converting mechanical strain into a chemical signal (pericellular calcium) to which cells respond. Such a mechanism may be responsible for triggering repair at locations of bone matrix undergoing critical deformation levels.
更多
查看译文
关键词
Calcium efflux,Bone matrix,Damage targeting,Mechanochemical transducer,Intracellular calcium,Osteoblast
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要