A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects

GENOMICS(2022)

引用 1|浏览2
暂无评分
摘要
Neoneuromus ignobilis is an archaic holometabolous aquatic predatory insect. However, a lack of genomic resources hinders the use of whole genome sequencing to explore their genetic basis and molecular mechanisms for adaptive evolution. Here, we provided a high-contiguity, chromosome-level genome assembly of N. ignobilis using high coverage Nanopore and PacBio reads with the Hi-C technique. The final assembly is 480.67 MB in size, containing 12 telomere-ended pseudochromosomes with only 17 gaps. We compared 42 hexapod species genomes including six independent lineages comprising 11 aquatic insects, and found convergent expansions of long wavelength-sensitive and blue-sensitive opsins, thermal stress response TRP channels, and sulfotransferases in aquatic insects, which may be related to their aquatic adaptation. We also detected strong nonrandom signals of convergent amino acid substitutions in aquatic insects. Collectively, our comparative genomic analysis revealed the evidence of molecular convergences in aquatic insects during both gene family evolution and convergent amino acid substitutions.
更多
查看译文
关键词
Aquatic insects,Genome,Convergent evolution,Amino acid substitution,Megaloptera
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要