Relationship between hemodynamics and atherosclerosis in aortic arches of apolipoprotein E-null mice on 129S6/SvEvTac and C57BL/6J genetic backgrounds.

Atherosclerosis(2012)

引用 27|浏览1
暂无评分
摘要
We investigated the relationships between hemodynamics and differential plaque development at the aortic arch of apolipoprotein E (apoE)-null mice on 129S6/SvEvTac (129) and C57BL/6J (B6) genetic backgrounds.Mean flow velocities at the ascending and descending aorta (mVAA and mVDA) were measured by Doppler ultrasound in wild type and apoE-null male mice at 3 and 9 months of age. Following dissection of the aortic arches, anatomical parameters and plaque areas were evaluated.Arch plaques were five times bigger in 129-apoE than in B6-apoE mice at 3 months, and twice as large at 9 months. The geometric differences, namely larger vessel diameter in the B6 strain and broader inner curvature of the aortic arch in the 129 strain, were exaggerated in 9-month-old apoE-null mice. Cardiac output and heart rate under anesthesia were significantly higher in the B6 strain than in the 129 strain. The values of mVAA were similar in the two strains, while mVDA was lower in the 129 strain. However, there was a 129-apoE-specific reduction of flow velocities with age, and both mVAA and mVDA were significantly lower in 129-apoE than in B6-apoE mice at 9 months. The mean relative wall shear stress (rWSS) over the aortic arch in 129-apoE and B6-apoE mice were not different, but animals with lower mean rWSS had larger arch plaques within each strain.The plaque formation in the arch of apoE-null mice is accompanied by strain-dependent changes in both arch geometry and hemodynamics. While arch plaque sizes negatively correlate with mean rWSS, additional factors are necessary to account for the strain differences in arch plaque development.
更多
查看译文
关键词
Apolipoprotein E-null mouse,Atherosclerosis,Aortic geometry,Hemodynamics,Wall shear stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要