Antibacterial Properties Of (2,3)-Alpha-Methylene And (2,3)-Beta-Methylene Analogs Of Penicillin-G

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(1988)

Cited 16|Views1
No score
Abstract
The penam nucleus can assume two conformations; these are designated open and closed. The synthetic (2,3)-alpha- and (2,3)-beta-methylenepenams can be regarded as analogs of the open and closed conformations, respectively. It has been shown that the beta-methylenepenams are essentially inactive, suggesting that the closed conformation of penams is also inactive. In this study, we investigated a series of beta-lactams, all of which contained phenylacetamido side chains: penicillin G, the (2,3)-alpha- and (2,3)-beta-methylenepenams, and the 3-acetoxymethyl- and 3-methylcephalosporins. The alpha-methylenepenam and penicillin G were the most active compounds, while the beta-methylene isomer was only poorly active. Results with permeability mutants suggested that the alpha-methylene compound penetrated the outer membrane somewhat more readily than penicillin G did. The intrinsic potency of the alpha-methylenepenam appeared to be similar to that of penicillin G, on the basis of their affinities for penicillin-binding proteins and their abilities to inhibit peptidoglycan synthesis in ether-permeabilized Escherichia coli, while the beta-methylene analog had very poor intrinsic potency. The alpha-methylene analog was about 10-fold more efficient (Vmax/Km) than penicillin G as a substrate for the cephalosporinases from Enterobacter cloacae and Proteus vulgaris, but it was about 40-fold less efficient with penicillinase from Staphylococcus aureus. These results strongly support the hypothesis that the active conformation of penams is the open conformation and suggest that the position in space of the carboxyl group relative to the beta-lactam carbonyl is an important determinant of cephalosporinlike character, as distinct from penicillinlike character.
More
Translated text
Key words
bacteria,protein binding,structure activity relationship
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined