Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.

JOURNAL OF NEUROCHEMISTRY(2008)

Cited 3|Views11
No score
Abstract
Effects of chloramphenicol (antibiotic inhibiting complex-1 of respiratory chain) and thioamphenicol (TAP, a structural analog of CAP inactive on complex-1) were examined on cerebral energy metabolites and sleep-wake cycle architecture in rat. In the first group, animals were chronically equipped with a cranial surface resonator and P-31 spectroscopic measurements were performed using a 2 T magnetic resonance spectrometer (operating frequency 34.46 MHz). CAP administration (400 mg/kg, tail vein, light period) induced deficits in phosphocreatine (-30%, p < 0.01) and ATP (-40%, p < 0.01), whereas TAP (400 mg/kg) had no effect. In the second group, animals were chronically implanted with polygraphic electrodes for EEG and electromyogram recordings. CAP administered intraperitoneally at light-onset reduced rapid-eye movement (REM) sleep (-60% in the first 6 h of light period, p < 0.01), increased waking state (+65% in the first 6 h of light period, p < 0.01), and slightly affected slow-wave sleep (SWS). During waking state, theta and sigma power bands of the EEG were, respectively, increased and decreased (p < 0.05). During SWS, delta power band was reinforced (p < 0.05), while theta, alpha, and sigma bands were decreased (p < 0.05). No changes occurred during REM sleep. TAP had no effect on sleep-wake states and spectral components of the EEG. Overall, these data indicate that REM sleep occurrence is linked to an aerobic production of ATP.
More
Translated text
Key words
adenosine triphosphate,chloramphenicol,rapid-eye-movements sleep
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined