Determination of post-culture processing with carbohydrates by MALDI-MS and TMS derivatization GC-MS.

Talanta(2011)

引用 8|浏览4
暂无评分
摘要
Biological materials generally require stabilization to retain activity or viability in a dry form. A number of industrial products, such as vaccines, probiotics and biopesticides have been produced as dry preparations. The same methods and materials used for stabilizing commercial microbial products may be applicable to preserving biothreat pathogens in a dry form. This is a likely step that may be encountered when looking at samples from terrorism attempts since only spores, such as those from Bacillus anthracis, are inherently stable when dried. The stabilizers for microbial preparations generally include one or more small carbohydrates. Different formulations have been reported for different industrial products and are often determined empirically. However sugar alcohols (mannitol and sorbitol) and disaccharides (lactose, sucrose and trehalose) are the common constituents of these formulations. We have developed an analytical method for sample preparation and detection of these simple carbohydrates using two complementary analytical tools, MALDI-MS and GC–MS. The native carbohydrates and other constituents of the formulation are detected by MALDI-MS as a screening tool. A longer and more detailed analysis is then used to specifically identify the carbohydrates by derivatization and GC–MS detection. Both techniques were tested against ten different types of stabilization recipes with Yersinia pestis cell mass cultured on different media types used as the biological component. A number of additional components were included in these formulations including proteins and peptides from serum or milk, polymers (e.g. poly vinyl pyrrolidone – PVP) and detergents (e.g. Tween). The combined method was characterized to determine several figures of merit. The accuracy of the method was 98% for MALDI-MS and 100% for GC–MS. The repeatability for detection of carbohydrates by MALDI-MS was determined to be 96%. The repeatability of compound identification by GC–MS was determined by monitoring variation in retention time, which is vital for identification of isomeric carbohydrates. The figures of merit illustrate an effective and accurate method for mono and disaccharide detection independent of formulation. This meets our primary goal for method development as small carbohydrates are among the most common stabilizers employed.
更多
查看译文
关键词
Gas chromatography–mass spectrometry,Matrix-assisted laser desorption/ionization,Carbohydrate additives,Trimethylsilyl derivative
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要