Chrome Extension
WeChat Mini Program
Use on ChatGLM

Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers.

PloS one(2011)

Cited 14|Views2
No score
Abstract
BACKGROUND:Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+)- and (-)-α -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS:Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A) A110T, A111C, A110T/A111C and LinA1(B90A) were constructed using the FoldX computer algorithm. Turnover rates (min(-1)) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA's, followed by the γ and then δ isomer. CONCLUSIONS/SIGNIFICANCE:The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined