Propagation of fast and slow intercellular Ca(2+) waves in primary cultured arterial smooth muscle cells.

Cell Calcium(2011)

引用 19|浏览17
暂无评分
摘要
Smooth muscle contraction is regulated by changes in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In response to stimulation, Ca(2+) increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca(2+) waves. To investigate the mechanisms underlying Ca(2+) wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca(2+) waves: (1) a fast wave (2mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20μm/s) that was spatially limited in propagation. KCl induced only fast Ca(2+) waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP(3)) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca(2+) influx through voltage-operated Ca(2+) channels, whereas, the slow wave was due to Ca(2+) release primarily through IP(3) receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.
更多
查看译文
关键词
Calcium waves,Intercellular communication,Smooth muscle cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要