Substrate mimicry: HIV-1 reverse transcriptase recognizes 6-modified-3'-azido-2',3'-dideoxyguanosine-5'-triphosphates as adenosine analogs.

NUCLEIC ACIDS RESEARCH(2012)

引用 5|浏览14
暂无评分
摘要
beta-D-3'-Azido-2',3'-dideoxyguanosine (3'-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3'-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3'-azido-ddG in primary cells. To gain insight into their structure-activity-resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT). Steady-state and pre-steady-state kinetic experiments show that the 6-modified-3'-azido-ddGTP analogs act as adenosine rather than guanosine mimetics in DNA synthesis reactions. The order of potency of the TP analogs against wild-type RT was: 3'-azido-2,6-diaminopurine >3'-azido-6-chloropurine; 3'-azido-6-N-allylaminopurine > 2-amino-6-N,N-dimethylaminopurine; 2-amino-6-methoxypurine. Molecular modeling studies reveal unique hydrogen-bonding interactions between the nucleotide analogs and the template thymine base in the active site of RT. Surprisingly, the structure-activity relationship of the analogs differed in HIV-1 RT ATP-mediated excision assays of their monophosphate forms, suggesting that it may be possible to rationally design a modified base analog that is efficiently incorporated by RT but serves as a poor substrate for ATP-mediated excision reactions. Overall, these studies identify a promising strategy to design novel nucleoside analogs that exert profound antiviral activity against both WT and drug-resistant HIV-1.
更多
查看译文
关键词
mutation,hiv reverse transcriptase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要