Evaluation of nucleolar organizer regions in maxillary osteosarcoma.

Acta odontológica latinoamericana : AOL(2007)

Cited 26|Views2
No score
Abstract
Maxillary osteosarcomas are a relatively frequent malignant tumor of the oral cavity. Similarly to other skeletal osteosarcomas, they exhibit different cellular differentiation patterns, i.e. chondroblastic, osteoblastic, or fibroblastic. Although their histological features resemble those of osteosarcomas of the long bones, their pattern of evolution usually differs. Morphometric variations in silver stained Nucleolar Organizer Regions (AgNOR) have proved of value to study the biology of several tumors. However, information on the analysis of AgNOR in maxillary tumors is scarce. The aim of the present study was to analyze the variations of different morphological parameters related to AgNOR in a series of 32 cases of maxillary osteosarcoma. In each case we analyzed 100 nuclei corresponding to the prevalent cellular differentiation type, selecting the most aggressive area. We employed software previously developed at our laboratory that yields information on different AgNOR-related parameters. The results were compared with those previously reported in a study on 12 cases of osteosarcoma of long bones. Six cases of oral mucosa squamous cell carcinoma were also included for comparative purposes. Single AgNOR volume proved to be the most discriminatory and informative parameter. The value of single AgNOR volume was considerably lower in mandible osteosarcomas than in osteosarcomas of the upper maxilla (p=0.02). The values were significantly lower in maxillary osteosarcomas than in long bone osteosarcomas and in oral carcinomas. This finding would suggest a slower rate of cell activity in maxillary osteosarcomas, associated in turn to its known lower degree of aggressiveness. The present results suggest that the analysis of AgNOR is a valuable and easily applicable marker to determine the degree of malignancy and biology of maxillary osteosarcomas.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined