Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.

B S Rajagopal, P A Lespinat,G Fauque, J LeGall, Y M Berlier

Applied and environmental microbiology(1989)

引用 9|浏览1
暂无评分
摘要
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.
更多
查看译文
关键词
methane,methanol,hydrogenase,mass spectrometry,kinetics,carbon dioxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要