Ionic events following GABA receptor activation in an identified insect motor neuron.

PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES(1988)

Cited 35|Views1
No score
Abstract
The ionic events underlying gamma-aminobutyric acid (GABA) receptor activation on the cell body of a cockroach identified motor neuron were investigated by using current-clamp and voltage-clamp techniques. The reversal potential for GABA-induced hyperpolarization was -77.0 +/- 2.4 mV (mean +/- s.e.m.; n = 22). The reversal potential for GABA was highly sensitive to changes in external chloride, only weakly affected by changes in external potassium, and independent of changes in either sodium or calcium ion concentration. Intracellular ion-sensitive microelectrodes confirmed that an influx of chloride ions mediated the GABA response. Intracellular injection of acetate, citrate, sulphate, fluoride or ammonium caused no change in the reversal potential for GABA. Intracellular injection of chloride, bromide, chlorate, bromate, or methyl sulphate shifted the reversal potential for GABA to values more positive than resting membrane potential. Evidence for chloride accumulating and for extrusion mechanisms was examined by using putative inhibitors. However, internal application of ammonium ions, and external application of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), acetazolamide, furosemide, ammonium, zinc and copper ions, were all without effect on the reversal potential for GABA.
More
Translated text
Key words
voltage clamp,potassium,copper,resting membrane potential,zinc
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined