Bacterial genotoxin triggers FEN1-dependent RhoA activation, cytoskeleton remodeling and cell survival.

JOURNAL OF CELL SCIENCE(2011)

引用 31|浏览10
暂无评分
摘要
The DNA damage response triggered by bacterial cytolethal distending toxins (CDTs) is associated with activation of the actin-regulating protein RhoA and phosphorylation of the downstream-regulated mitogen-activated protein kinase (MAPK) p38, which promotes the survival of intoxicated (i.e. cells exposed to a bacterial toxin) cells. To identify the effectors of this CDT-induced survival response, we screened a library of 4492 Saccharomyces cerevisiae mutants that carry deletions in nonessential genes for reduced growth following inducible expression of CdtB. We identified 78 genes whose deletion confers hypersensitivity to toxin. Bioinformatics analysis revealed that DNA repair and endocytosis were the two most overrepresented signaling pathways. Among the human orthologs present in our data set, FEN1 and TSG101 regulate DNA repair and endocytosis, respectively, and also share common interacting partners with RhoA. We further demonstrate that FEN1, but not TSG101, regulates cell survival, MAPK p38 phosphorylation, RhoA activation and actin cytoskeleton reorganization in response to DNA damage. Our data reveal a previously unrecognized crosstalk between DNA damage and cytoskeleton dynamics in the regulation of cell survival, and might provide new insights on the role of chronic bacteria infection in carcinogenesis.
更多
查看译文
关键词
Cytolethal distending toxin,DNA damage,FEN1,Cell survival,TSG101,RhoA,Actin cytoskeleton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要