Cooperatively Rearranging Regions Change Shape Near The Mode-Coupling Crossover For Colloidal Liquids On A Sphere

NATURE COMMUNICATIONS(2020)

引用 4|浏览1
暂无评分
摘要
The structure and dynamics of liquids on curved surfaces are often studied through the lens of frustration-based approaches to the glass transition. Competing glass transition theories, however, remain largely untested on such surfaces and moreover, studies hitherto have been entirely theoretical/numerical. Here we carry out single particle-resolved imaging of dynamics of bi-disperse colloidal liquids confined to the surface of a sphere. We find that mode-coupling theory well captures the slowing down of dynamics in the moderate to deeply supercooled regime. Strikingly, the morphology of cooperatively rearranging regions changed from string-like to compact near the mode-coupling crossover-a prediction unique to the random first-order theory of glasses. Further, we find that in the limit of strong curvature, Mermin-Wagner long-wavelength fluctuations are irrelevant and liquids on a sphere behave like three-dimensional liquids. A comparative evaluation of competing mechanisms is thus an essential step towards uncovering the true nature of the glass transition. The static and dynamic behavior of condensed phases residing on curved surfaces can be fundamentally different from their counterparts in Euclidean space. Singh et al. test several competing glass theories on colloidal liquids confined to the surface of a sphere and show they behave like 3D bulk liquids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要