The tick salivary protein, Salp15, inhibits the development of experimental asthma.

JOURNAL OF IMMUNOLOGY(2007)

Cited 32|Views2
No score
Abstract
Activation of Th2 CD4(+) T cells is necessary and sufficient to elicit allergic airway disease, a mouse model with many features of human allergic asthma. Effectively controlling the activities of these cells could be a panacea for asthma therapy. Blood-feeding parasites have devised remarkable strategies to effectively evade the immune response. For example, ticks such as Ixodes scapularis, which must remain on the host for up to 7 days to feed to repletion, secrete immunosuppressive proteins. Included among these proteins is the 15-kDa salivary protein Salp15, which inhibits T cell activation and IL-2 production. Our objective for these studies was to evaluate the T cell inhibitory properties of Salp15 in a mouse model of allergic asthma. BALB/cJ mice were Ag sensitized by i.p. injection of OVA in aluminum hydroxide, with or without 50 mu g of Salpl-5, on days 0 and 7. All mice were challenged with aerosolized OVA on days 14-16 and were studied on day 18. Compared with control mice sensitized with Ag, mice sensitized with Ag and Salp15 displayed significantly reduced airway hyperresponsiveness, eosinophilia, Ag-specific IgG1 and IgE, mucus cell metaplasia, and Th2 cytokine secretion in vivo and by CD4(+) T cells restimulated with Ag in vitro. Our results demonstrate that Salp15 can effectively prevent the generation of a Th2 immune response and the development of experimental asthma. These studies, and those of others, support the notion that a lack of ectoparasitism may contribute to the increasing prevalence of allergic asthma.
More
Translated text
Key words
tick salivary protein,asthma,salp15
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined