Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling.

Proceedings of the National Academy of Sciences of the United States of America(2007)

引用 93|浏览7
暂无评分
摘要
The intrinsic chemical reaction of adenosine triphosphate (ATP) hydrolysis catalyzed by myosin is modeled by using a combined quantum mechanics and molecular mechanics (QM/MM) methodology that achieves a near ab initio representation of the entire model. Starting with coordinates derived from the heavy atoms of the crystal structure (Protein Data Bank ID code 1VOM) in which myosin is bound to the ATP analog ADP.VO(4)(-), a minimum-energy path is found for the transformation ATP + H(2)O --> ADP + P(i) that is characterized by two distinct events: (i) a low activation-energy cleavage of the P(gamma) O(betagamma) bond and separation of the gamma-phosphate from ADP and (ii) the formation of the inorganic phosphate as a consequence of proton transfers mediated by two water molecules and assisted by the Glu-459-Arg-238 salt bridge of the protein. The minimum-energy model of the enzyme-substrate complex features a stable hydrogen-bonding network in which the lytic water is positioned favorably for a nucleophilic attack of the ATP gamma-phosphate and for the transfer of a proton to stably bound second water. In addition, the P(gamma) O(betagamma) bond has become significantly longer than in the unbound state of the ATP and thus is predisposed to cleavage. The modeled transformation is viewed as the part of the overall hydrolysis reaction occurring in the closed enzyme pocket after ATP is bound tightly to myosin and before conformational changes preceding release of inorganic phosphate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要