Chrome Extension
WeChat Mini Program
Use on ChatGLM

Renal responses to salinity change in snakes with and without salt glands.

JOURNAL OF EXPERIMENTAL BIOLOGY(2011)

Cited 19|Views9
No score
Abstract
To understand renal responses to salinity change in aquatic reptiles, we examined the structure and function of the kidney in three species of snake: a marine species with a salt gland (Laticauda semifasciata), a marine species without a salt gland (Nerodia clarkii clarkii) and a freshwater species without a salt gland (Nerodia fasciata). Both marine species maintained relatively constant plasma ions, even after acclimation to saltwater. By contrast, both plasma Cl-and mortality increased with salinity in the freshwater species. To investigate putative renal ion regulatory mechanisms, we examined the distribution and abundance of Na+/K+-ATPase (NKA) and the Na+/K+/2Cl(-) cotransporter (NKCC2). In all species, NKA localized to the basolateral membranes of the distal tubule and the connecting segments and collecting ducts only; there was no effect of salinity on the distribution of NKA or on the abundance of NKA mRNA in any species. NKCC2 protein was undetectable in the kidney of any of the species and there was no effect of salinity on NKCC2 mRNA abundance. We also examined the distribution and abundance of aquaporin 3 (AQP3) in the kidney of these species; although putative AQP3 localized to the basolateral membranes of the connecting segments and collecting ducts of all three species, there was no effect of salinity on the localization of the protein or the abundance of the transcript. Interestingly, we found very few differences across species, suggesting that the snake kidney may play a trivial role in limiting habitat use.
More
Translated text
Key words
acclimation,AQP3,kidney,Laticauda,Nerodia,NKA,NKCC2,salinity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined