Charge-State Dependence Of K-Shell X-Ray Production In Aluminum By 2-12-Mev Carbon Ions

H L Sun,Y C Yu,Eric K Lin, C W Wang, J L Duggan, Amir Azordegan,Mcdaniel Floyd Del,Gregory Lapicki

PHYSICAL REVIEW A(1996)

Cited 18|Views7
No score
Abstract
Charge-state dependence for K-shell x-ray production cross sections in Al-13 bombarded by 2-12-MeV C-6 ions with charge states from 2+ to 6+ was measured using a Si(Li) detector. A thin Al target was used to ensure single collision conditions. Contributions of the electron capture as well as direct ionization to the inner-shell ionization were determined by an analysis of the charge-state dependence of the target x-ray production. The measurements are compared with the prediction of the ECPSSR theory using a single-hole fluorescence yield. The ECPSSR theory is based on the perturbed stationary state (PSS) formalism and relativistic effects (R) for the target electrons, and energy loss (E) and Coulomb deflection (C) of the projectile. In general, this theory gives reasonable agreement with the data for carbon ions without K vacancies while it overpredicts the data for carbon ions with K vacancies. The significant underprediction of the data at the lowest energy is likely associated with the molecular-orbital effect that is not accounted for in the ECPSSR theory.
More
Translated text
Key words
cross section,aluminum,stationary state,molecular orbital,ion beam,charge transfer,relativistic effects,k shell,plane waves,x ray detector
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined