Melatonin improves muscle function of the dystrophic mdx5Cv mouse, a model for Duchenne muscular dystrophy.

JOURNAL OF PINEAL RESEARCH(2011)

Cited 49|Views14
No score
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. In addition to abnormal calcium handling, numerous studies point to a crucial role of oxidative stress in the pathogenesis of the disease. Considering the impressive results provided by antioxidants on dystrophic muscle structure and function, we investigated whether melatonin can protect the mdx(5Cv) mouse, an animal model for DMD. Male mdx(5Cv) mouse pups were treated with melatonin by daily intraperitoneal (i.p.) injection (30 mg/kg body weight) or by subcutaneous (s.c.) implant(s) (18 or 54 mg melatonin as Melovine (R) implants) from 17/18 to 28/29 days of age. Isometric force of the triceps surae was recorded at the end of the treatment. The i.p. treatment increased the phasic twitch tension of mdx(5Cv) mice. The maximal tetanic tension was ameliorated by 18 mg s. c. and 30 mg/kg i.p. treatments. Melatonin caused the dystrophic muscle to contract and relax faster. The force-frequency relationship of melatonin-treated dystrophic mice was shifted to the right. In accordance with improved muscle function, melatonin decreased plasma creatine kinase activity, a marker for muscle injury. Melatonin treatment increased total glutathione content and lowered the oxidized/reduced glutathione ratio, indicating a better redox status of the muscle. In light of the present investigation, the therapeutic potential of melatonin should be further considered for patients with DMD.
More
Translated text
Key words
calcium,Duchenne muscular dystrophy,glutathione,mdx mouse,melatonin,muscle,oxidative stress
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined