Oxygen cost of dynamic or isometric exercise relative to recruited muscle mass

Dynamic medicine : DM(2006)

引用 16|浏览2
暂无评分
摘要
Background Oxygen cost of different muscle actions may be influenced by different recruitment and rate coding strategies. The purpose of this study was to account for these strategies by comparing the oxygen cost of dynamic and isometric muscle actions relative to the muscle mass recruited via surface electrical stimulation of the knee extensors. Methods Comparisons of whole body pulmonary Δ O 2 were made in seven young healthy adults (1 female) during 3 minutes of dynamic or isometric knee extensions, both induced by surface electrical stimulation. Recruited mass was quantified in T 2 weighted spin echo magnetic resonance images. Results The Δ O 2 for dynamic muscle actions, 242 ± 128 ml • min -1 (mean ± SD) was greater (p = 0.003) than that for isometric actions, 143 ± 99 ml • min -1 . Recruited muscle mass was also greater (p = 0.004) for dynamic exercise, 0.716 ± 282 versus 0.483 ± 0.139 kg. The rate of oxygen consumption per unit of recruited muscle ( ) was similar in dynamic and isometric exercise (346 ± 162 versus 307 ± 198 ml • kg -1 • min -1 ; p = 0.352), but the calculated relative to initial knee extensor torque was significantly greater during dynamic exercise 5.1 ± 1.5 versus 3.6 ± 1.6 ml • kg -1 • Nm -1 • min -1 (p = 0.019). Conclusion These results are consistent with the view that oxygen cost of dynamic and isometric actions is determined by different circumstances of mechanical interaction between actin and myosin in the sarcomere, and that muscle recruitment has only a minor role.
更多
查看译文
关键词
Knee Extensor,Dynamic Exercise,Isometric Exercise,Pennation Angle,Isometric Action
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要