Possible Mechanism Of Adenovirus Generation From A Cloned Viral Genome Tagged With Nucleotides At Its Ends

MICROBIOLOGY AND IMMUNOLOGY(2006)

引用 27|浏览5
暂无评分
摘要
The entire cloned human adenovirus type 5 (Ad5) genome is known to be able to generate infectious virus after transfection into 293 cells when the both ends of the genome are exposed by digestion with appropriate restriction enzymes. However, when one or both ends of the genome are tagged with nucleotides and are not intact, whether the tagged end of the viral genome was remained tagged or corrected to be intact during the generation of viral clones has been unclear and, if such oligonucleotide removal occurs, how does the virus remove these tagged sequences and thereby restore its proper structure? Here, we show in our semi-quantitative study that the generation efficiency of virus clones decreases depending on the length of nucleotide tags at the both ends and that both the oligonucleotide tags were precisely removed during virus generation with restoration of the proper terminal sequences. Interestingly the viral genome of which one end was tagged, while the other was attached about 12-kb sequences, did generate intact viral clones at a reduced but significant efficiency. From these results, we here propose a possible mechanism whereby the terminal-protein-deoxycytidine complex enters from the enzyme-cleaved end and reaches deoxyguanine at the initiating position of DNA synthesis in vivo. A replication origin at one end, embedded deeply in double-stranded DNA, can be activated by two cycles of one-directional full-length DNA synthesis initiated by the other exposed replication origin about 30 kilobases away. We also describe new cassette cosmids which can use not only PacI but also BstBI for construction of an adenovirus vector, without reducing construction efficiency.
更多
查看译文
关键词
adenovirus,virus generation,viral replication,virus vector
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要