Human Cytochrome P450 Induction And Inhibition Potential Of Clevidipine And Its Primary Metabolite H152/81

DRUG METABOLISM AND DISPOSITION(2006)

引用 43|浏览15
暂无评分
摘要
Clevidipine is a short-acting dihydropyridine calcium channel antagonist under development for treatment of perioperative hypertension. Patients treated with clevidipine are likely to be comedicated. Therefore, the potential for clevidipine and its major metabolite H152/81 to elicit drug interactions by induction or inhibition of cytochrome P450 was investigated. Induction of CYP1A2, CYP2C9, and CYP3A4 was examined in primary human hepatocytes treated with clevidipine at 1, 10, and 100 mu M. Clevidipine was found to be an inducer of CYP3A4, but not of CYP1A2 or CYP2C9, at the 10 mu M and 100 mu M concentrations of clevidipine tested. Induction response for CYP3A4 to 100 mu M clevidipine was approximately 20% of that of the positive control inducer rifampicin. The response of H152/81 was similar. Using cDNA-expressed enzymes, clevidipine inhibited CYP2C9, CYP2C19, and CYP3A4 activities with IC50 values below 10 mu M, whereas CYP1A2, CYP2D6, and CYP2E1 activities were not substantially inhibited (IC50 values > 70 mu M). The K-i values for CYP2C9 and CYP2C19 were 1.7 and 3.3 mu M, respectively, and those for CYP3A4 were 8.3 and 2.9 mu M, using two substrates, testosterone and midazolam, respectively. These values are at least 10 times higher than the highest clevidipine concentration typically seen in the clinic. Little or no inhibition by H152/81 was found for the enzyme activities mentioned above (IC50 values >= 69 mu M). The present study demonstrates that it is highly unlikely for clevidipine or its major metabolite to cause cytochrome P450-related drug interactions when used in the dose range required to manage hypertension in humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要