谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion.

MOLECULAR VISION(2010)

引用 39|浏览9
暂无评分
摘要
Purpose: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. Methods: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham-operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. xtracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH(2)-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. Results: Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. Conclusions: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure.
更多
查看译文
关键词
retinal arteries,protein kinases,mitogen-activated,ischemia-reperfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要