Two Thymidine Hydroxylases Differentially Regulate The Formation Of Glucosylated Dna At Regions Flanking Polymerase Ii Polycistronic Transcription Units Throughout The Genome Of Trypanosoma Brucei

NUCLEIC ACIDS RESEARCH(2010)

Cited 74|Views13
No score
Abstract
Base J is a hypermodified DNA base localized primarily to telomeric regions of the genome of Trypanosoma brucei. We have previously characterized two thymidine-hydroxylases (TH), JBP1 and JBP2, which regulate J-biosynthesis. JBP2 is a chromatin re-modeling protein that induces de novo J-synthesis, allowing JBP1, a J-DNA binding protein, to stimulate additional J-synthesis. Here, we show that both JBP2 and JBP1 are capable of stimulating de novo J-synthesis. We localized the JBP1- and JBP2-stimulated J by anti-J immunoprecipitation and high-throughput sequencing. This genome-wide analysis revealed an enrichment of base J at regions flanking polymerase II polycistronic transcription units (Pol II PTUs) throughout the T. brucei genome. Chromosome-internal J deposition is primarily mediated by JBP1, whereas JBP2-stimulated J deposition at the telomeric regions. However, the maintenance of J at JBP1-specific regions is dependent on JBP2 SWI/SNF and TH activity. That similar regions of Leishmania major also contain base J highlights the functional importance of the modified base at Pol II PTUs within members of the kinetoplastid family. The regulation of J synthesis/localization by two THs and potential biological function of J in regulating kinetoplastid gene expression is discussed.
More
Translated text
Key words
histones,rna polymerase ii,dna binding proteins,cell line
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined