Ejecting Deactivation Does Not Affect O-2 Consumption-Pressure-Volume Area Relation In Dog Hearts

AMERICAN JOURNAL OF PHYSIOLOGY(1993)

引用 4|浏览6
暂无评分
摘要
We studied the effects of ejection velocity and resistive properties of the left ventricle (LV) on myocardial oxygen consumption (VO2) in 13 excised cross-circulated dog hearts. Increases in peak ejection velocity (-dV/dt) from 4.0 +/- 1.3 (SD) end-diastolic volume (EDV)/s to 12.7 +/- 5.3 EDV/s with constant EDV and end-systolic volume (velocity run) induced systolic pressure deficit. This decreased pressure-volume area (PVA; a measure of ventricular mechanical energy) and LV end-systolic elastance (E(max)) by 47 +/- 14 and 38 +/- 15%, respectively. Unchanged maximum rate of left ventricular pressure rise and time-varying elastance during the isovolumic contraction period at the same EDV indicated that these contractions started with the same contractile state although the quicker ejection caused the greater deactivation. If the PVA deficit due to systolic pressure deficit is attributable to an internal energy-dissipating resistive element, VO2 in the velocity run will not as much decrease in proportion to PVA as in the isovolumic or slowly ejecting control run. However, the decreases in PVA due to increased -dV/dt decreased VO2 to the same extent as in the control run. This result negated the possibility that the pressure and PVA deficits would be caused by a mechanical energy-losing process. The same results were obtained whether or not E(max) was decreased by quick ejection. We conclude that the pressure and PVA deficits and the proportionally decreased VO2 during quick ejection are mainly attributable to suppression of a ventricular mechanical energy generation process, but not of mechanical energy-losing process, by ejecting deactivation.
更多
查看译文
关键词
INTERNAL RESISTANCE, EJECTION VELOCITY, END-SYSTOLIC ELASTANCE, CARDIAC ENERGETICS, SHORTENING DEACTIVATION
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要