Magnetic-Field Dependence of Effective Plasma Frequency for a Plasma Photonic Crystal

Photonics Journal, IEEE(2013)

引用 16|浏览1
暂无评分
摘要
The effective plasma frequency in a photonic crystal (PC) is defined as the lowest frequency at which electromagnetic wave can start to propagate through the PC. In this paper, we theoretically investigate the effective plasma frequency fp, eff for a magnetized 1-D plasma PC (PPC). The PPC is made of two constituents, i.e., the plasma and the dielectric material like quartz. The effective plasma frequency in a PPC is obtained based on the calculated photonic band structure (PBS). It is found that fp, eff can be controlled by the externally applied static magnetic field, namely, fp, eff decreases significantly as the static magnetic field increases. This suggests that the plasma layer in a PPC shows a dielectric-like behavior when the magnetic field is applied. In addition, in the presence of static magnetic field, fp, eff will be increased as a function of electron density and thickness of the plasma layer. In the angular dependence of effective plasma frequency, we find that fp, eff is a decreasing function of angle of incidence in the absence of the static magnetic field. However, it becomes an increasing function of angle of incidence when the static magnetic field is applied. Finally, the effect of filling factor of the plasma layer is also illustrated.
更多
查看译文
关键词
electron density,magneto-optical effects,photonic band gap,photonic crystals,plasma density,quartz,transfer function matrices,sio2,effective plasma frequency,filling factor,magnetic-field dependence,magnetized 1-d plasma pc,photonic band structure,plasma photonic crystal,transfer matrix method,plasma photonic crystal (ppc),transfer matrix method (tmm)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要