SystemC-MDVP modelling of pressure driven microfluidic systems

Victor Fernandez, Elier Wilpert, Herique Isidoro,Cedric Ben Aoun,Francois Pecheux

Embedded Computing(2014)

引用 5|浏览5
暂无评分
摘要
Systems composed by multiple physical domains (i.e. mechanical, biological, optical, fluidic, etc.) and usually controlled by an embedded HW/SW circuit cannot, up to date, be jointly simulated in order to correctly specify, dimension and verify these multi-domain microelectronics assisted systems at an early system level stage. This paper describes part of the work that it is being carrying out (under the CATRENE CA701 project) in order to define an open framework, based on SystemC-AMS, with the aim to extend this language to support multiple physical domains. The proposed extensions for being able to model a micro-fluidic system are going to be exposed. Two approaches have been selected: to model the fluid analytically based on the Poiseuille flow theory and to model the fluid numerically following the SPH (Smoothed Particle Hydrodynamics) approach. Both modeling techniques are, by now, encapsulated under the TDF (Timed Data Flow) MoC (Model of Computation) of SystemC-AMS.
更多
查看译文
关键词
microfluidics,multi-domain simulation,poiseuille flow,sph (smoothed particle hydrodynamics),systemc-ams,fluids,mathematical model,computational modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要