QORE: A fault tolerant network-on-chip architecture with power-efficient quad-function channel (QFC) buffers

HPCA(2014)

引用 55|浏览52
暂无评分
摘要
Network-on-Chips (NoCs) are quickly becoming the standard communication paradigm for the growing number of cores on the chip. While NoCs can deliver sufficient bandwidth and enhance scalability, NoCs suffer from high power consumption due to the router microarchitecture and communication channels that facilitate inter-core communication. As technology keeps scaling down in the nanometer regime, unpredictable device behavior due to aging, infant mortality, design defects, soft errors, aggressive design, and process-voltage-temperature variations, will increase and will result in a significant increase in faults (both permanent and transient) and hardware failures. In this paper, we propose QORE - a fault tolerant NoC architecture with Quad-Function Channel (QFC) buffers. The use of QFC buffers and their associated control (link and fault controllers) enhance fault-tolerance by allowing the NoC to dynamically adapt to faults at the link level and reverse propagation direction to avoid faulty links. Additionally, QFC buffers reduce router power and improve performance by eliminating in-router buffering. Our simulation results using real benchmarks and synthetic traffic mixes show that QORE improves speedup by 1.3× and throughput by 2.3× when compared to state-of-the art fault tolerant NoCs designs such as Ariadne and Vicis. Moreover, using Synopsys Design Compiler, we also show that network power in QORE is reduced by 21% with minimal control overhead.
更多
查看译文
关键词
synthetic traffic mixes,network routing,power consumption,faulty link,qore,fault controller,device behavior,fault tolerant network-on-chip architecture,fault tolerant computing,bandwidth,router microarchitecture,fault tolerant noc architecture,communication channel,qfc buffers,in-router buffering,reverse propagation direction,integrated circuit design,network power,router power,buffer circuits,synopsys design compiler,power-efficient quad-function channel buffer,fault tolerant noc design,intercore communication,fault-tolerance,network-on-chip,standard communication paradigm,hardware failure,associated control,logic gates,fault tolerance,transistors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要