Finding Highly Connected Subgraphs.

Lecture Notes in Computer Science(2015)

Cited 17|Views119
No score
Abstract
A popular way of formalizing clusters in networks are highly connected subgraphs, that is, subgraphs of k vertices that have edge connectivity larger than k/2 (equivalently, minimum degree larger than k/2). We examine the computational complexity of finding highly connected subgraphs. We first observe that this problem is NP-hard. Thus, we explore possible parameterizations, such as the solution size, number of vertices in the input, the size of a vertex cover in the input, and the number of edges outgoing from the solution (edge isolation), and expose their influence on the complexity of this problem. For some parameters, we find strong intractability results; among the parameters yielding tractability, the edge isolation seems to provide the best trade-off between running time bounds and a small parameter value in relevant instances.
More
Translated text
Key words
Vertex Cover, Reduction Rule, Edge Deletion, Problem Kernel, Search Tree Node
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined