Model Predictive Control for Spacecraft Rendezvous and Docking: Strategies for Handling Constraints and Case Studies

Control Systems Technology, IEEE Transactions  (2015)

引用 173|浏览3
暂无评分
摘要
This paper presents a strategy and case studies of spacecraft relative motion guidance and control based on the application of linear quadratic model predictive control (MPC) with dynamically reconfigurable constraints. The controller is designed to transition between the MPC guidance during a spacecraft rendezvous phase and MPC guidance during a spacecraft docking phase, with each phase having distinct requirements, constraints, and sampling rates. Obstacle avoidance is considered in the rendezvous phase, while a line-of-sight cone constraint, bandwidth constraints on the spacecraft attitude control system, and exhaust plume direction constraints are addressed during the docking phase. The MPC controller is demonstrated in simulation studies using a nonlinear model of spacecraft orbital motion. The implementation uses estimates of spacecraft states derived from relative angle and range measurements, and is robust to estimator dynamics and measurement noise.
更多
查看译文
关键词
Space vehicles,Vectors,Collision avoidance,Orbits,Attitude control,Robustness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要