High shear stress-induced pulmonary hypertension alleviated by endothelial progenitor cells independent of autophagy

World journal of pediatrics : WJP(2015)

Cited 9|Views38
No score
Abstract
Background Pulmonary hypertension (PH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Endothelial progenitor cells (EPCs) have been proved to be a potential therapeutic strategy to treat PH. Autophagy has been found to be protective to hypoxia-induced PH. In this study, we applied high shear stress (HSS)-induced PH, and examined whether EPCs confer resistance against HSS-induced PH through autophagy. Methods Pulmonary microvascular endothelial cells (PMVECs) were cultured under HSS with pro-inflammatory factors in an artificial capillary system to mimic the PH condition. Levels of p62, a selective autophagy substrate, were quantified by western blotting. Cell viability was determined by trypan blue exclusion test. Results The p62 level in PMVECs was increased at 4 hours after HSS, peaked at 12 hours and declined at 24 hours. The cell viability gradually decreased. Compared with PMVECs cultured by empty medium, in cells cultured by EPC-conditioned medium (EPC-CM), the cell viability was significantly higher; however, p62 levels were also significantly higher, suggesting inhibition of autophagy by EPC-CM. Adding choloquine to suppress autophagy decreased the cell viability of PMVECs under PH. Conclusions EPC-CM could suppress the autophagic activity of PMVECs in HSS-induced PH. However, suppression of autophagy leads to cell death. EPCs could fight against PH through cellular or molecular pathways independent of autophagy. But it is not proved if induction of autophagy could be a potential strategy to treat HSS-induced PH as hypoxia-induced PH.
More
Translated text
Key words
autophagy,endothelial progenitor cells,pulmonary hypertension
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined