Higher-order multipole amplitude measurement in ψ ′→γχc2

Medina Ablikim,Mikhail N. Achasov,Diego Alberto,F. F. An,Qi AN,Zhenghua An,JingZhi Bai,Rinaldo Baldini,Yong Ban,Julia K. Becker,Niklaus Berger,Monica B. Bertani,Jianming Bian,E. Boger,Olga A. Bondarenko,I. R. Boyko,Roy A. Briere,Vladimir V. Bytev,Xiao Cai,A. C. Calcaterra,Guofu Cao,Jinfan Chang,Georgy A. Chelkov,Gang Chen,Hesheng Chen,Jin Chen,Mali Chen,S. J. Chen,Yu Chen,Ying Chen,H. P. Cheng,Yuanping Chu,Daniel P. Cronin-Hennessy,Hongliang Dai,Jianping Dai,Dmitri V. Dedovich,Ziyan Deng,I. Denysenko,M. F. Destefanis,Yong Ding,LiaoYuan Dong,Mingyi Dong,ShuXian Du,Jian Fang,Shuangshi Fang,Changqing Feng,ChengDong Fu,Jie Fu,Ya Gao,Chao Geng,K. Goetzen,Wenxuan Gong,Michela Greco,M. H. Gu,YunTing Gu,Ying Guan,Aiqiang Guo,Libo Guo,Yan Guo, Yong Han,X. Q. Hao,Frederick A. Harris,Kangling He,Mao He,Zhenya He,Yuekun Heng,Zhilong Hou,Haiming Hu,Jifeng Hu,Tao Hu,Bin Huang,Guangming Huang,Jinshu Huang,Xu Huang,Y. P. Huang,Talib A. Hussain,Chen Ji,Quan Ji,XiaoBin Ji,Xiaolu Ji,LuKui Jia,Lei Jiang,XiaoShan Jiang,Jun Jiao,Zheng Jiao,Dapeng Jin,Shan Jin,F. F. Jing,Nasser Kalantar-Nayestanaki,M. O. Kavatsyuk,Wolfgang Kuehn,Wanchang Lai,Jens Sören Lange,John Kon Chong Leung,Chun Li,Cheng Li,Cui Li,D. M. Li,Fang Li,Gang Li,Haibo Li,Jiacai Li,Kang Li,Lei Li,N. B. Li,Qiuju Li,Sheng Li,W. D. Li,W. G. Li,Xianlei Li,Xiaonan Li,Xueqian Li,Xiurong Li,Zhibing Li,Haojun Liang,Y. F. Liang,Yutie Liang,Xiaotao Liao,Biao Liu,C. L. Liu,C. X. Liu, Cheng Liu,Fuhu Liu,Fang Liu,Feng Liu,Hongwei Liu,Hongbang Liu,Huihui Liu,Huaimin Liu,H. W. Liu,Jia Liu,Kun Liu,Kai Liu,Kuiyong Liu,Qian Liu,S. B. Liu,Xiang Liu,Xiaohai Liu,Yubin Liu,Yang Liu,Yong Liu,Zhen'An Liu,Zhiqiang Liu,Zhiqing Liu,Herbert Loehner,GongRu Lu,HaiJiang Lü,JunGuang Lü,Qiwen Lü,Xiaorui Lü,Yunpeng Lu,Chenglin Luo,Man Luo,Tao Luo,XiaoLan Luo,M. Lv,Chao Ma,Fengcai Ma,HaiLong Ma,Qiang Ma,Sixuan Ma,T. Ma,Xiang Ma,XiaoYan Ma,Marco Maggiora,Q. A. Malik,Huishun Mao,Yajun Mao,Zepu Mao,Johan G M Messchendorp,Jian Min,Tai Min,Ryan E. Mitchell,XiaoHu Mo,Nikolay Yu Muchnoi,Yu A. Nefedov,Ivan B. Nikolaev,Zhe Ning,Stephen Lars Olsen,Qun Ouyang,Simone P. Pacetti, ,M. Pelizaeus, Klaus J. Peters,Jialun Ping,Ronggang Ping,Ronald A. Poling,Chun Shing Jason Pun,Ming Qi,Sen Qian,Congfeng Qiao,Xiaoshuai Qin,Jing Qiu,K. H. Rashid,Gang Rong,XiangDong Ruan,Andrey V. Sarantsev,J. Schulze,Shao Ming,Chengping Shen,Xiaoyan Shen,Huayi Sheng,Matthew R. Shepherd,X. Y. Song,Stefano Spataro,Björn Spruck,D. H. Sun,Gongxing Sun,Jinfeng Sun,Shuaishuai Sun,XiaoDong Sun,YongJie Sun,Yi Sun,ZhiJia Sun,Zhe Sun,Changjian Tang,Xiaowei Tang,HaoLai Tian,Derrick Toth,Gary S. Varner,BaoRong Wang,Bing Wang,Kexiang Wang,LiangLiang Wang,Lin Wang,Meng Wang,Ping Wang,Peilin Wang,Qun Wang,Qian Wang,Shiguang Wang,Xiaolian Wang,Yandong Wang,Yifang Wang,Yongqiang Wang,Zhe Wang,Zhigang Wang,Zheng Wang,DaiHui Wei,Qungang Wen,Shuopin Wen,Ulrich Wiedner,LingHui Wu,Ning Wu,Wei Wu,Ziyu Wu,Zhenjun Xiao,Yi Xie,Q. L. Xiu,Guang Xu,Guangming Xu,Hao Xu,Qingjun Xu,X. P. Xu,Yanan Xu,Zhangrun Xu,Zizong Xu,Zhen Xue,Litao Yan,Wang Yan,Yonghong Yan,Huan Yang,Tao Yang,Yadong Yang,Yongxu Yang,H. Ye,Mei Ye,Minghan Ye,Boxiang Yu,Cao Yu,S. P Yu Yu,Chao Yuan,W. L. Yuan,Ye Yuan,Abrar Ahmed Zafar,Adriano Z. Zallo,Yun Zeng,BingXin Zhang,Bin Zhang,Chao Zhang,Changchun Zhang,D. H. Zhang,Hui Zhang,Hongyu Zhang,Jun Zhang,Jian Zhang,Jiawen Zhang,Jing Zhang,Liang Zhang,S. H. Zhang,T. R. Zhang,Xuan Zhang,Xueyao Zhang,Yi Zhang,Ying Zhang,Yao Zhang,Ziping Zhang,Zhenyu Zhang,Gongbo Zhao,Hui Zhao,Jiawei Zhao,Jingwei Zhao,Lei Zhao,Ling Zhao,Minggang Zhao,Qiang Zhao,Shujun Zhao,Tianchi Zhao,Xin Zhao,Yubin Zhao,Zhi Zhao,Zhongliang Zhao,Alexey S. Zhemchugov,B. Zheng,Jian Zheng,Yangheng Zheng,Zhi Zheng,Bin Zhong,J. Zhong,Liqiang Zhong,Lijuan Zhou,Xin Zhou,C. Zhu,KeJun Zhu,Kai Zhu,Shihai Zhu,Xianglei Zhu,XiongWei Zhu,YongSheng Zhu,Zian Zhu,Jiejia Zhuang,Bingsong Zou,Jiaheng Zou,Jiaxu Zuo

PHYSICAL REVIEW D(2011)

引用 25|浏览174
暂无评分
摘要
Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2 = 0.046 +/- 0.010 +/- 0.013 and E3 = 0.015 +/- 0.008 +/- 0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4 sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.
更多
查看译文
关键词
null
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要