Charge-transport in tin-iodide perovskite CH3NH 3SnI3: Origin of high conductivity

DALTON TRANSACTIONS(2011)

引用 354|浏览1
暂无评分
摘要
The structural and electrical properties of a metal-halide cubic perovskite, CH3NH3SnI3, have been examined. The band structure, obtained using first-principles calculation, reveals a well-defined band gap at the Fermi level. However, the temperature dependence of the single-crystal electrical conductivity shows metallic behavior down to low temperatures. The temperature dependence of the thermoelectric power is also metallic over the whole temperature range, and the large positive value indicates that charge transport occurs with a low concentration of hole carriers. The metallic properties of this as-grown crystal are thus suggested to result from spontaneous hole-doping in the crystallization process, rather than the semi-metal electronic structure. The present study shows that artificial hole doping indeed enhances the conductivity.
更多
查看译文
关键词
null
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要