Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor

Environmental Science and Pollution Research(2012)

引用 18|浏览12
暂无评分
摘要
Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil–plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMB C ), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02–0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMB C content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.
更多
查看译文
关键词
Acetochlor,Rhizosphere,Microbial biomass carbon,Phospholipid fatty acids,Colony-forming units
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要