XQ-1H Suppresses Neutrophils Infiltration and Oxidative Stress Induced by Cerebral Ischemia Injury Both In Vivo and In Vitro

Neurochemical Research(2013)

引用 24|浏览3
暂无评分
摘要
Cerebral ischemia/reperfusion injury plays an important role in the development of tissue injury after acute stroke, including neutrophils adhesion and infiltration, inflammation and oxidative stress. 10-O-( N , N -dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H) is a novel ginkdolide B derivative. In this study, we investigated the anti-inflammatory and anti-oxidative activities of XQ-1H in vivo and vitro. In our study, rats were treating with XQ-1H (31.2, 15.6 and 7.8 mg/kg) after middle cerebral artery occlusion surgery. Primary cultured cortical rat neurons were treated with Na 2 S 2 O 4 for 1.5 h to mimic hypoxia and reoxygenation injury in vitro. Cortical neurons were preincubated with XQ-1H (100, 10, 1 μM) 24 h before hypoxic injury. Brain edema was evaluated by brain water content. Neutrophil infiltration was determined by fluorescence imaging method and myeloperoxidase assay. Intercellular adhesion molecule 1 (ICAM-1) and matrix metallopeptidase 9 (MMP-9) expressions were examined by immunohistochemistry analysis. Neuronal injury was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, lactate dehydrogenase releasing and lactic acid content. The anti-oxidative effects of XQ-1H were evaluated by superoxide dismutase (SOD) activity and malondialdehyde content in ischemic brain and neuron cultures subjected to hypoxia/reoxygenation procedure. Results showed that XQ-1H reduced neutrophils infiltration to ischemic brain, which might result from down regulation of inflammatory mediators, such as ICAM-1 and MMP-9. In addition, an antioxidative effect of XQ-1H was observed in cortical neuron and brain homogenates by enhancing SOD activity and inhibiting lipid peroxidation. These results indicated that XQ-1H possessed a protective effect against cerebral ischemia, especially on neutrophil infiltration and oxidative stress.
更多
查看译文
关键词
Middle cerebral artery occlusion,Hypoxia and reoxygenation,Neurons,Neutrophil infiltration,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要