A Comparative Proteomic Analysis Of Pinellia Ternata Leaves Exposed To Heat Stress

Yunhao Zhu,Guosheng Zhu, Qiaosheng Guo, Zaibiao Zhu, Changlin Wang, Zuoyi Liu

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2013)

Cited 36|Views9
No score
Abstract
Pinellia ternata is an important traditional Chinese medicinal plant. The growth of P. ternata is sensitive to high temperatures. To gain a better understanding of heat stress responses in P. ternata, we performed a comparative proteomic analysis. P. ternata seedlings were subjected to a temperature of 38 degrees C and samples were collected 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress was frequently generated in rice leaves exposed to high temperature. Two-dimensional electrophoresis (2-DE) was used to analyze heat-responsive proteins. More than 600 protein spots were reproducibly detected on each gel; of these spots, 20 were up-regulated, and 7 were down-regulated. A total of 24 proteins and protein species were successfully identified by MALDI-TOF/TOF MS. These proteins and protein species were found to be primarily small heat shock proteins (58%) as well as proteins involved in RNA processing (17%), photosynthesis (13%), chlorophyll biosynthetic processes (4%), protein degradation (4%) and defense (4%). Using 2-DE Western blot analysis, we confirmed the identities of the cytosolic class II small heat shock protein (sHSPs-CII) identified by MS. The expression levels of four different proteins [cytosolic class I small heat shock protein (sHSPs-CI), sHSPs-CII, mitochondrial small heat shock protein (sHSPs-MIT), glycine-rich RNA-binding protein (GRP)] were analyzed at the transcriptional level by quantitative real-time PCR. The mRNA levels of three sHSPs correlated with the corresponding protein levels. However, GRP was down-regulated at the beginning of heat stress but then increased substantially to reach a peak after 24 h of heat stress. Our study provides valuable new insight into the responses of P. ternata to heat stress.
More
Translated text
Key words
proteomics,quantitative real-time PCR,heat stress,Pinellia ternata
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined