Numerical modelling of high-speed ball end milling with cutter inclination angle

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE(2012)

引用 12|浏览3
暂无评分
摘要
This paper describes the development of a simulation model for ball end milling with inclination angle based on a finite element method. The Johnson-Cook model and isotropic hardening rule were used to describe the properties of the workpiece material, and re-meshing technology was adopted to obtain accurate results. The Cockcroft-Latham criteria rule was used to determine the chip formation. The ball end mill was modelled, and then imported into a finite element analysis system for simulation of machining process. The heat conducted into the cutter was taken into account in the present simulation, giving a better accordance with the actual machining process. Thirty combinations of cutting parameters and inclination angle of the ball end milling process were simulated in the finite element environment, and the corresponding ball end milling experiments were conducted in a five-axis machine. Evolution of the chip and the effective stress predicted in the shear zone during simulation were presented. The cutting forces derived from the simulation were compared with the experimental results, and the overall trend of the maximum cutting forces in each direction showed a good agreement with the experimentally measured values. The potential possibility to study five-axis ball end milling with both inclination angle in feed and cross-feed direction was pointed out.
更多
查看译文
关键词
numerical modelling,high-speed,ball end milling,inclination angle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要