[Effect of operational modes on community structure of type I methanotroph in the cover soil of municipal solid waste landfill].

PubMed(2008)

Cited 0|Views4
No score
Abstract
Type I methanotroph is crucial for methane oxidization and it responses fast to the changes in environment. In this study, 16S rDNA-based denaturing gradient gel electrophoresis (DGGE) gene fingerprint technology was applied to investigate the effect of operational modes, i. e. high-density polyethylene liner (HDPE) isolation or subsurface irrigation of landfill leachate and vegetation, on community structure and diversity of type I methanotroph in soils covering municipal solid waste landfill. 16S rDNA based phylogenetic analysis reveals type I methanotroph in all tested soils belongs to Methylobacter. According to Shannon-Wiener diversity index and principal component analysis, landfill leachate subsurface irrigation and vegetation have more impact on type I methanotroph community structure and diversity than HDPE liner isolation does, and they reduce type I methanotroph diversity. Leachate irrigation is supposed to inhibit the growth of Methylobacter population. Community structure of type I methanotroph in landfill cover soil isolated by HDPE, i.e. invaded by landfill gas, shifts during long-term gas interference. When cover age is 1.5 years old, Shannon-Wiener diversity index of type I methanotroph reaches its maximum.
More
Translated text
Key words
municipal solid waste landfill,methanotroph,cover soil
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined