Complexation and calcium-induced conformational changes in the cardiac troponin complex monitored by hydrogen/deuterium exchange and FT-ICR mass spectrometry

International Journal of Mass Spectrometry(2011)

Cited 6|Views22
No score
Abstract
Cardiac muscle contraction is regulated by the heterotrimeric complex: troponin. We apply solution-phase hydrogen/deuterium exchange monitored by FT-ICR mass spectrometry to study the structural dynamics and the Ca-induced conformational changes of the cardiac isoform of troponin, by comparing H/D exchange rate constants for TnC alone, the binary TnC:TnI complex, and the ternary TnC:TnI:TnT complex for Ca-free and Ca-saturated states. The wide range of exchange rate constants indicates that the complexes possess both highly flexible and very rigid domains. Fast exchange rates were observed for the N-terminal extension of TnI (specific to the cardiac isoform), the DE linker in TnC alone, and the mobile domain of TnI. The slowest rates were for the IT coiled-coil that grants stability and stiffness to the complex. Ca2+ binding to site II of the N-lobe of TnC induces short-range allosteric effects, mainly protection for the C-lobe of TnC that transmits long-range conformational changes that reach the IT coiled-coil and even TnT1. The present results corroborate prior X-ray crystallography and NMR interpretations and also illuminate domains that were truncated or not resolved in those experiments.
More
Translated text
Key words
Isotopic depletion,H/D exchange,FTMS,Fourier transform,Ion cyclotron resonance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined