Gravitational collapse in the postinflationary Universe

PHYSICAL REVIEW D(2022)

Cited 20|Views0
No score
Abstract
The Universe may pass through an effectively matter-dominated epoch between inflation and big bang nucleosynthesis during which gravitationally bound structures can form on subhorizon scales. In particular, the inflaton field can collapse into inflaton halos, forming "large scale" structure in the very early universe. We combine N-body simulations with high-resolution zoom-in regions in which the nonrelativistic Schrodinger-Poisson equations are used to resolve the detailed, wave-like structure of inflaton halos. Solitonic cores form inside them, matching structure formation simulations with axion-like particles in the late-time universe. We denote these objects inflaton stars, by analogy with boson stars. Based on a semianalytic formalism we compute their overall mass distribution which shows that some regions will reach overdensities of 1015 if the early matter-dominated epoch lasts for 20 e-folds. The radii of the most massive inflaton stars can shrink below the Schwarzschild radius, suggesting that they could form primordial black holes prior to thermalization.
More
Translated text
Key words
universe,post-inflationary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined