On the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian Distributions.

NeurIPS(2023)

引用 0|浏览0
暂无评分
摘要
Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this paper, we prove several properties of KL divergence between multivariate Gaussian distributions. First, for any two $n$-dimensional Gaussian distributions $\mathcal{N}_1$ and $\mathcal{N}_2$, we give the supremum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\leq \varepsilon\ (\varepsilon>0)$. For small $\varepsilon$, we show that the supremum is $\varepsilon + 2\varepsilon^{1.5} + O(\varepsilon^2)$. This quantifies the approximate symmetry of small KL divergence between Gaussians. We also find the infimum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\geq M\ (M>0)$. We give the conditions when the supremum and infimum can be attained. Second, for any three $n$-dimensional Gaussians $\mathcal{N}_1$, $\mathcal{N}_2$, and $\mathcal{N}_3$, we find an upper bound of $KL(\mathcal{N}_1||\mathcal{N}_3)$ if $KL(\mathcal{N}_1||\mathcal{N}_2)\leq \varepsilon_1$ and $KL(\mathcal{N}_2||\mathcal{N}_3)\leq \varepsilon_2$ for $\varepsilon_1,\varepsilon_2\ge 0$. For small $\varepsilon_1$ and $\varepsilon_2$, we show the upper bound is $3\varepsilon_1+3\varepsilon_2+2\sqrt{\varepsilon_1\varepsilon_2}+o(\varepsilon_1)+o(\varepsilon_2)$. This reveals that KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems presented in this paper are independent of the dimension $n$. Finally, We discuss the applications of our theorems in explaining counterintuitive phenomenon of flow-based model, deriving deep anomaly detection algorithm, and extending one-step robustness guarantee to multiple steps in safe reinforcement learning.
更多
查看译文
关键词
gaussian distributions,divergence,kullback-leibler
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要