Chrome Extension
WeChat Mini Program
Use on ChatGLM

Subsidence and Rock Creep in a Cross-Valley Fill

Environmental geology(1994)

Cited 3|Views6
No score
Abstract
Cross-valley fills composed cf waste rock from mining operations pose environmental concerns related to their long-term stability. A large (2.06×107 m3) phosphate waste dump in southeastern Idaho was monitored from 1981 to 1988 for subsidence and horizontal displacement in conjunction with different surficial rock types and long-term precipitation patterns. Most of the 19 surveyed benchmarks on the dump face moved in the northeast direction during the 7-yr study period, roughly the same orientation as the aspect of the fill face. Average vertical subsidence rate decreased exponentially with time from a high of 0.15 m/yr in 1981–1982 to a fairly stable level of 0.008 m/yr by 1988. Net displacement similarly decreased from 0.19 m/yr shortly after dump construction to 0.023 m/yr by 1988. Both subsidence and net displacement were initially higher in the shale cap on the west side of the chert-filled dump; however, by 1986–1988 subsidence and displacement rates were actually lower in the shale material. Subsidence and net displacement appeared unaffected by temporal precipitation patterns; both subsidence and net displacement rates declined significantly during the very wet snowmelt seasons of 1983 and 1984. The temporal patterns of movement at the dump site suggest that the breakdown of the rock (especially shale) occurs primarily during the first 1.5 yr following dump construction. Periodic saturation of the upper 6 m of spoil occurred in nine of 60 neutron access tubes, normally during the spring snowmelt seasons. Saturation occurred at depths ≥1.8 m and is thought to be associated with uneven compaction or heterogeneities in the fill. Overall, the dump appeared to be internally well drained with rates of rock creep unaffected by seasonal water inputs.
More
Translated text
Key words
Mine dump stability,Subsidence,Creep,Pore water pressure,Phosphate mines
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined