Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints.

Bone(2006)

引用 89|浏览5
暂无评分
摘要
The mechanisms that regulate functional adaptation of the articular ends of long bones are poorly understood. However, endochondral ossification of articular cartilage and modeling/remodeling of the subchondral plate and epiphyseal trabeculae are important components of the adaptive response. We performed a histologic study of the distal end of the third metacarpal/metatarsal bone of Thoroughbreds after bones were bulk-stained in basic fuchsin and calcified sections were prepared. The Thoroughbred racehorse is a model of an extreme athlete which experiences particularly high cyclic strains in distal limb bones. The following variables were quantified: microcrack boundary density in calcified cartilage (N.Cr/B.Bd); blood vessel boundary density in calcified cartilage (N.Ve/B.Bd); calcified cartilage width (Cl.Cg.Wi); duplication of the tidemark; and bone volume fraction of the subchondral plate (B.Ar/T.Ar). Measurements were made in five joint regions (lateral condyle and condylar groove; sagittal ridge; medial condylar and condylar groove). N.Cr/B.Bd was site-specific and was increased in the condylar groove region; this is the joint region from which parasagittal articular fatigue (condylar) fractures are typically propagated. Formation of resorption spaces in the subchondral plate was co-localized with microcracking. N.Ve/B.Bd was also site-specific. In the sagittal ridge region, N.Ve/B.Bd was increased, Cl.Cg.Wi was decreased, and B.Ar/T.Ar was decreased, when compared with the other joint regions. Multiple tidemarks were seen in all joint regions. Cumulative athletic activity was associated with a significant decrease in B.Ar/T.Ar in the condylar groove regions. N.Cr/B.Bd was positively correlated with B.Ar/T.Ar (P < 0.05, rs = 0.29) and N.Ve/B.Bd was negatively correlated with B.Ar/T.Ar (P < 0.005, r2 = 0.14) and Cl.Cg.Wi (P < 0.05, r2 = 0.07). We conclude that endochondral ossification of articular cartilage and modeling/remodeling of the subchondral plate promote initiation and propagation of site-specific fatigue microcracking of the joint surface, respectively, in this model. Microcracking of articular calcified cartilage likely represents mechanical failure of the joint surface. Propagation of microcracks into the subchondral plate is a critical factor in the pathogenesis of articular condylar fatigue (stress) fracture. Functional adaptation of the joint likely protects hyaline cartilage from injury in the short-term but may promote joint degeneration and osteoarthritis with ongoing athleticism.
更多
查看译文
关键词
Fatigue,Microcracking,Targeted remodeling,Calcified cartilage,Subchondral plate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要