Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming

Gene Therapy(2005)

Cited 46|Views10
No score
Abstract
Fusogenic membrane glycoproteins (FMG) are a family of viral genes that, when expressed in tumour cells, trigger extensive cell to cell fusion and subsequent cell death. Gene therapy approaches using FMG are also potentially immunogenic, since syncitia generated ex vivo can be therapeutic as antitumour vaccines in murine models. This study has addressed the mechanisms responsible for the immunogenicity of FMG-mediated cell death, and its applicability to human immune priming. We show that fusion of human Mel888 melanoma cells following transfection with FMG can reverse the suppressive effects of Mel888 on dendritic cells (DC) phenotype, and potentiate IL-12 production by DC on activation in a cell contact-dependent manner. DC loaded with fusing, but not intact, tumour cells primed a naive, tumour-specific cytotoxic T-cell response, which was MHC class I-restricted and associated with production of high levels of IFN γ and, later, IL-5. Fusing cells were an effective source of antigen for DC cross-priming and presentation of the melanoma-specific antigen gp100 to a specific T-cell clone. These data show, in a human system, that FMG represent an immunogenic, as well as cytotoxic, gene therapy for cancer, reversing the inhibitory effects of tumour cells on DC to potentiate IL-12 production and naive T-cell priming.
More
Translated text
Key words
fusogenic proteins,dendritic cells,immunotherapy,syncitia,T-cell priming
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined