Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach: targeting the pyrophosphate binding sub-domain.

Bioorganic & Medicinal Chemistry(2011)

Cited 30|Views8
No score
Abstract
Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (Ki=5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC50=0.45μM). Compound 4 was as potent as Gleevec (IC50=0.56μM) heralded as a ‘magic bullet’ against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with Ki’s lower than 100nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.
More
Translated text
Key words
AMP,IMP,IMPDH,NAD,NMN,TR,TAD,MPA,MAD,CML,AICAR,PMB,DIC,Mycophenolic alcohol
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined