Stimulation of limb cartilage differentiation by cyclic AMP is dependent on cell density

Cell Differentiation and Development(1989)

引用 32|浏览4
暂无评分
摘要
Cyclic AMP (cAMP) has been implicated in the regulation of limb cartilage differentiation. This study represents an attempt to clarify potential mechanisms by which cAMP might regulate chondrogenesis. We have found that the ability of cAMP to stimulate limb cartilage differentiation in vitro is dependent on cell density. Dibutyryl cAMP (dbcAMP) elicits a striking increase in the accumulation of Alcian blue, pH 1.0-positive cartilage matrix, and a corresponding three- to fourfold increase in the accumulation of 35S-labeled glycosaminoglycans (GAG) by limb mesenchymal cells cultured in low serum medium at densities greater than confluence (i.e. micromass cultures established with 1–2 × 105 cells in 10 μl of medium). Moreover, dbcAMP causes a striking (two- to fourfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific sulfated proteoglycan in these high density, supraconfluent cultures. In contrast, cAMP does not promote the chondrogenesis of limb mesenchymal cells cultured at subconfluent densities (i.e. cultures initiated with 2.5–5 × 104 cells in 10 μl of medium). In these low density cultures, dbcAMP does not promote the formation of cartilage matrix, sulfated GAG accumulation or the accumulation of cartilage-specific mRNAs. These observations suggest that cAMP may exert its regulatory effect in part by facilitating cell-cell communication during the critical condensation phase of chondrogenesis.
更多
查看译文
关键词
cyclic amp
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要