Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue.

JOURNAL OF ENDOCRINOLOGY(2005)

Cited 12|Views12
No score
Abstract
Glucagon-like peptide 1 (GLP-1) analogues are considered potential drugs for type 2 diabetes. We studied the effect of a novel GLP-1 analogue, S 23521 ([a(8)-des R-36]GLPl-[7-37]-NH2), on the metabolic state and beta-cell function, proliferation and survival in the Psammomys obesus model of diet-induced type 2 diabetes. Animals with marked hyperglycaemia after 6 days of high-energy diet were given twice-daily s.c. injection of 100 mu g/kg S 23521 for 15 days. Food intake was significantly decreased in S 23251-treated P. obesus; however, there was no significant difference in body weight from controls. Progressive worsening of hyperglycaemia was noted in controls, as opposed to maintenance of pre-treatment glucose levels in the S 23521 group. Prevention of diabetes progression was associated with reduced mortality. In addition, the treated group had higher serum insulin, insulinogenic index and leptin, whereas plasma triglyceride and non-esterified fatty acid levels were decreased. S 23521 had pronounced effect on pancreatic insulin, which was 5-fold higher than the markedly depleted insulin reserve of control animals. Immunohistochemical analysis showed islet degranulation with disrupted morphology in untreated animals, whereas islets from S 23521-treated animals appeared intact and filled with insulin; beta-cell apoptosis was approximately 70% reduced, without a change in beta-cell proliferation. S 23521 treatment resulted in a 2-fold increase in relative beta-cell volume. Overall, S 23521 prevented the progression of diabetes in P. obesus with marked improvement of the metabolic profile, including increased pancreatic insulin reserve, beta-cell viability and mass. These effects are probably due to actions of S 23521 both directly on islets and via reduced food intake, and emphasize the feasibility of preventing blood glucose deterioration over time in type 2 diabetes.
More
Translated text
Key words
cell proliferation,cell viability,dependent types,body weight
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined