谷歌浏览器插件
订阅小程序
在清言上使用

Hydrophobicity drives the cellular uptake of short cationic peptide ligands

European Biophysics Journal(2011)

引用 33|浏览3
暂无评分
摘要
Short cationic linear peptide analogs (LPAs, prepared as Arg-C n -Arg-C n -Lys, where C n represents an alkyl linkage with n = 4, 7 or 11) were synthesized and tested in human breast carcinoma BT-20 and CCRF-CEM leukemia cells for their application as targeting ligands. With constant LPA charge (+4), increasing the alkyl linkage increases the hydrophobic/hydrophilic balance and provides a systematic means of examining combined electrostatic and hydrophobic peptide–membrane interactions. Fluorescently conjugated LPA-C 11 (F-LPA-C 11 ) demonstrated significant uptake, whereas there was negligible uptake of the shorter LPAs. By varying temperature (4°C and 37°C) and cell type, the results suggest that LPA-C 11 internalization is nonendocytic and nonspecific. The effect of LPA binding on the phase behavior, structure, and permeability of model membranes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine (DPPC/DPPS, 85/15) was studied using differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and fluorescence leakage studies to gain insight into the LPA uptake mechanism. While all LPAs led to phase separation, LPA-C 11 , possessing the longest alkyl linkage, was able to penetrate into the bilayer and caused holes to form, which led to membrane disintegration. This was confirmed by rapid and complete dye release by LPA-C 11 . We propose that LPA-C 11 achieves uptake by anchoring to the membrane via hydrophobicity and forming transient membrane voids. LPAs may be advantageous as drug transporter ligands because they are small, water soluble, and easy to prepare.
更多
查看译文
关键词
Cell-penetrating peptide,Lipid membrane,Phase separation,Calorimetry,Pore formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要