Filter scheduling function model in internet server: resource configuration, performance evaluation and optimal scheduling

Filter scheduling function model in internet server: resource configuration, performance evaluation and optimal scheduling(2010)

引用 23|浏览4
暂无评分
摘要
Internet traffic often exhibits a structure with rich high-order statistical properties like self-similarity and long-range dependency (LRD). This greatly complicates the problem of server performance modeling and optimization. On the other hand, popularity of Internet has created numerous client-server or peer-to-peer applications, with most of them, such as online payment, purchasing, trading, searching, publishing and media streaming, being timing sensitive and/or financially critical. The scheduling policy in Internet servers is playing central role in satisfying service level agreement (SLA) and achieving savings and efficiency in operations. The increasing popularity of high-volume performance critical Internet applications is a challenge for servers to provide individual response-time guarantees. Existing tools like queuing models in most cases only hold in mean value analysis under the assumption of simplified traffic structures. Considering the fact that most Internet applications can tolerate a small percentage of deadline misses, we define a decay function model characterizes the relationship between the request delay constraint, deadline misses, and server capacity in a transfer function based filter system. The model is general for any time-series based or measurement based processes. Within the model framework, a relationship between server capacity, scheduling policy, and service deadline is established in formalism. Time-invariant (non-adaptive) resource allocation policies are design and analyzed in the time domain. For an important class of fixed-time allocation policies, optimality conditions with respect to the correlation of input traffic are established. The upper bound for server capacity and service level are derived with general Chebshev’s inequality, and extended to tighter boundaries for unimodal distributions by using Vysochanski-Petunin’s inequality. For traffic with strong LRD, a design and analysis of the decay function model is done in the frequency domain. Most Internet traffic has monotonically decreasing strength of variation functions over frequency. For this type of input traffic, it is proved that optimal schedulers must have a convex structure. Uniform resource allocation is an extreme case of the convexity and is proved to be optimal for Poisson traffic. With an integration of the convex-structural principle, an enhance GPS policy improves the service quality significantly. Furthermore, it is shown that the presence of LRD in the input traffic results in shift of variation strength from high frequency to lower frequency bands, leading to a degradation of the service quality. The model is also extended to support server with different deadlines, and to derive an optimal time-variant (adaptive) resource allocation policy that minimizes server load variances and server resource demands. Simulation results show time-variant scheduling algorithm indeed outperforms time-invariant optimal decay function scheduler. Internet traffic has two major dynamic factors, the distribution of request size and the correlation of request arrival process. When applying decay function model as scheduler to random point process, corresponding two influences for server workload process is revealed as, first, sizing factor—interaction between request size distribution and scheduling functions, second, correlation factor—interaction between power spectrum of arrival process and scheduling function. For the second factor, it is known from this thesis that convex scheduling function will minimize its impact over server workload. Under the assumption of homogeneous scheduling function for all requests, it shows that uniform scheduling is optimal for the sizing factor. Further more, by analyzing the impact from queueing delay to scheduling function, it shows that queueing larger tasks vs. smaller ones leads to less reduction in sizing factor, but at the benefit of more decreasing in correlation factor in the server workload process. This shows the origin of optimality of shortest remain processing time (SRPT) scheduler.
更多
查看译文
关键词
server capacity,correlation factor,scheduling function,internet server,Internet traffic,sizing factor,input traffic,service quality,resource allocation policy,resource configuration,optimal scheduling,performance evaluation,decay function model,server workload process
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要